Developer Guide BNF Tools

BNF Tools is a BNF-Editor based on xText DSLs, which gives away alot of features.

The used Features are:

e Grammardefinition

e Validation

® Quickfixing

¢ Generation of content from the BNF
¢ Formatting

® Qutlining

e File import

® Deployment as Plugin

¢ Deployment as RCP (Rich Client Platform)

Grammardefinition:

The corefeature of xText.
This is defined in de.ugoe.cs.swe.bnftools.ebnf/de.ugoe.cs.swe.bnftools.ebnf/EBNF.xtext

IT contains the Entities after which the grammar must be defined, while the first rule is the Start e.g.:

EtsiBnf:
'grammar' name=ID
(type='/bnf'? ';'
(importSection=ImportSection)?
(bnfEntry+=BnfEntry) +

(type="'/delta' ';'
(importSection=ImportSection)?
(deltaEntry+=DeltaEntry) *

(type="'/merge' ';'
(importSection=ImportSection)?
(mergeEntry+=MergeEntry) *

Developer Guide BNF Tools

To turn this into a runable application the .mwe? file in the same folder must be executed as MWE2
Workflow.After this the whole project can be executed as an Eclipse Application for testing:

Validation allows to check for conditions in the
BNF-Document:

In the File de.ugoe.cs.swe.bnftools.ebnf/de.ugoe.cs.swe.ebnf.validation/EbnfValidator.xtend
validationrules can be defined e.g.:
@CheckdefvoidcheckUnusedRule (Rule rule) { var List<RuleReference > references = E

The parameter can be any Entity from the previously defined Grammar and every Entity of this Type will be
checked this way.

And if the Check finds some inconsistency awarningwill be displayed to this Entity Instance in the Editor.
The other files in the Package contain supporting Methodes for the validation
like
EbnfAnalysisUtils.findReferences (rule);
or

EbnfAnalysisUtils.findReferences (rule, resourceDescriptions);

Which find the Rule references inside a BNF-File or outside a BNF-File.

Quickfixing can be applied to warnings given by Validations:

In the File de.ugoe.cs.swe.bnftools.ebnf.ui/de.ugoe.cs.swe.bnftools.ui.quickfix/EbnfQuickfixProvider.xtend

quickfixes for validation-warnings can be defined e.g.:

@Fix (EbnfValidator.unusedRuleDescription)
def void fixUnusedRule (Issue issue, IssueResolutionAcceptor acceptor) {

acceptor.accept (issue, "Remove unused rule", "Delete the unused rule", "upcase.r
[element, context |
var Rule rule = element as Rule;
var IXtextDocument xtextDocument = context.getXtextDocument ();
var ICompositeNode node = NodeModelUtils.findActualNodeFor (rule)
var int offset = node.textRegion.offset;
var String nodeText = node.text;
var int textLength = nodeText.length - 2;
xtextDocument .replace (offset, textLength, "");

Grammardefinition: 2

The @Fix(String token)annotation definies that the following method is a quickfix for a validationwarning, with
thatfokenas code parameter:

warning (unusedRuleDescription, EbnfPackage$Literals::RULE__NAME, unusedRuleDescription, rule.nan
@Fix (EbnfValidator.unusedRuleDescription)
The accaptor inside applies the changes, via two possible ways:

1. Change the Document itself (like the example shows).

1. Change the underlying ecoremodel.

Generation allows to generate other files from a
BNF-Document:

In our case we create a .fo document, that can be transformed into a PDF-Document using Apache FOP.
It can be customized in the File de.ugoe.cs.swe.bnftools.ebnf/de.ugoe.cs.swe.ebnf.generator/EbnfGenerator.xtend

Where thedoGeneratemethode defines how the files given by a Resource and a IfileSystemAccess should generate
a new file. While for every relevant Entity from the

BNF a compile Methode handles the generation in the new file, while it calls the compile Methode for every related
Entity e.g.:

def void doGenerate (Resource resource, IFileSystemAccess fsa,boolean mode) {
var String workspacePath = WorkspaceResolver.getWorkspace();

for (e : resource.allContents.tolterable.filter (EtsiBnf)) {
if (e.bnfEntry.size != 0) {
fsa.generateFile (e.name + ".fo", e.compile)

Based on the generated .fo file a PDF-document can be generated for this the class
de.ugoe.cs.swe.bnftools.ebnf/de.ugoe.cs.swe.ebnf.generator/foToPDF can be used, either by giving the .fo file and
the output URI without Ending or simply the giving the classpath of the file.

For this the doGenerateMethode needed an upgrade to access the filesystem via URIs:

def void doGenerate (Resource resource, IFileSystemAccess fsa,boolean mode) {
var String workspacePath = WorkspaceResolver.getWorkspace();

for (e : resource.allContents.tolterable.filter (EtsiBnf)) {
if (e.bnfEntry.size != 0) {
fsa.generateFile (e.name + ".fo", e.compile)

//generate pdf

var uri = (fsa as IFileSystemAccessExtension2) .getURI (e.name + "
var String fullUri = workspacePath + uri.path.substring (10, uri.
var File file = new File (fullUri);

if (file.exists) {

Quickfixing can be applied to warnings given by Validations: 3

//true -> pdf, false -> rtf
if (mode) {

FoToPdfOrRtf.createRtfFromFo (fullUri.substring (C
telse{

FoToPdfOrRtf.createPdfFromFo (fullUri.substring (C
}

// fsa.deleteFile (e.name + ".fo");

To include apache fop you need to add all the jars in a folder e.g. Libs in your project, add this folder to your
buildpath, cofigure buildpath and add the jars to it and add them in the plugin.xml on the page runtime at classpath.

Formatting or Prittey Printing is to format the BNF-Document:

In the File de.ugoe.cs.swe.bnftools.ebnf/de.ugoe.cs.swe.ebnf.formatting/EbnfFormatter.xtend
the Method configureFormatting(FormattingConfig c)allows to define formatting rules

before, after or between Enteties or Keywords.

c.g.:
@Inject extension EbnfGrammarAccess override protected voidconfigureFormatting (FormattingConfig
{
c.setLinewrap(0,1,2) .before (SL_COMMENTRule) ;
c.setLinewrap(0,1,2) .before (ML_COMMENTRule) ;
c.setLinewrap(0,1,1) .after (ML_COMMENTRule) ;

var EbnfGrammarAccess f = getGrammarAccess as EbnfGrammarAccess;c.setlLinewrap.before(f.r
c.setlLinewrap.before (f.importRule);c.setNoSpace.after (f.ruleAccess.rulenumberINTTerminal

The Entities are recieved via an Inector that gives access to The Grammar.

Outlining and Labeling are Features, that show the document
Structure of the BNF-Document:

Outlinining can be customized in the File
de.ugoe.cs.swe.bnftools.ebnf.ui/de.ugoe.cs.swe.bnftools.ui.outline/EbnfOutline TreeProvider.xtend.

Here you can define a_createChildren()with the rootNode and the BNF-Entity of the Grammar to change the
outline sequence:

def void_createChildren (DocumentRootNode parentNode, EtsiBnf bnf) {
createNode (parentNode, bnf) ;

}
Labeling is made to customize what the outline text for an Entity should look like.

Generation allows to generate other files from aBNF-Document: 4

It can be customized in the file
de.ugoe.cs.swe.bnftools.ebnf.ui/de.ugoe.cs.swe.bnftools.ui.labeling/EbnfLabelProvider.xtend

Where for every Entity a text can be defined:

def text (ImportSection sec){'Imports'}

File import allows to reference Rules from one BNF-Document
in another:

There are 2 ways for imports, via URI and VIA Namespaces:

The BNF-Grammar uses the URI version. To Activate this the lines

fragment= scoping.ImportNamespacesScopingFragmentauto-inject{}
fragment= exporting.QualifiedNamesFragmentauto-inject{}
fragment= builder.BuilderIntegrationFragmentauto—-inject{}
fragment= types. [wiki:TypesGeneratorFragmentauto]-inject{}

in the .mwe?2 file have to be commented out and the lines:

fragment= scoping.ImportURIScopingFragmentauto-inject{}
fragment= exporting.SimpleNamesFragmentauto-inject{}

must be included.

After That imports can be defined like this and will automaticly be used:

'"import' importURI = STRING

Also it is possible to add features to the Ul via Xtext:

Therefor i recomend reading this Guide Zhttp:/flipsomel. wordpress.com/.

But don't use the @QOverride annotation!

Deployment as Plugin:

If you want to deploy your the BNF Tools you can use the deployment as plugin:
Rightclick your xTextProject, choose export, choose Plug-in development --> Deployable plug-ins and fragments,

choose all parts of the project, *.ebnf *.ebnf.tests *.ebnf.ui and a directory. After you finish this will generate a jar
for every one of the choosen projects. Add these to the pluigin-folder of a eclipse and it should be installed

Deployment as RCP:

If you want to create a Rich client platform for a standalone minimal worbench setup with only your plugin an
requiered plugins in it RCP is a good choice (This is for an eclipse 3.x RCP).

Outlining and Labeling are Features, that show the documentStructure of the BNF-Document:

http://flipsomel.wordpress.com/

First create your xText Project, then create a new Plug-in Project. Give it a name,

e.g. de.ugoe.cs.swe.bnftools.ebnf.product. Click next, and unchoose Generate an Activator, a Java Class that
controls the plug-in-s life cycle and This plug-in will make contributions to the UI. Also choose no at Rich client
Platform. Press finish.

now open the Manifest. MF, go to the Overview page and choose This plug-in in a singleton. Then go to the
Dependencies page and add org.eclipse.core.runtime.

Now create a product configuration in your product project, on its Overview Pageclick new, choose a fitting name
and ID, your product project as defining Plugin and org.eclipse.ui.ide.workbench as application. Now go back to
the Manifest. MFand open the Extensions Page. There you should now see 1 Extension
org.eclipse.core.runtime.products with a product inside. This should have org.eclipse.ui.ide.workbench as
application and the given name of the product configuration as name. Rightclick the product and create a new
property and if you want you can give it a customized name and value.

Now back to the p roduct configuration and its dependencies page. There you add all your xtext projects and your
product, then click add Requiered Plug-ins. After this you still need to add the Plugins org.eclipse.ui.ide.application
and org.eclipse.core.net. Now you can test your product by running it as a Runtime Eclipse, if there is a missing
plugin you can find it using the_ _validate plugins option in the run configurations plug-ins page . Deploy it using
Export as an Eclipse Product in the product configuration.

@ To make the generator run properly you need to add org.eclipse.xtext.xbase to your product configuration
dependencies

Deployment as RCP: 6

	tmpYh_YqUtracpdf

