
Custom Ticket Fields
Trac supports adding custom, user-defined fields to the ticket module. Using custom fields, you can add typed,
site-specific properties to tickets.

Configuration

Configuring custom ticket fields is done in the trac.ini file. All field definitions should be under a section named
[ticket-custom].

The syntax of each field definition is:

 FIELD_NAME = TYPE
 (FIELD_NAME.OPTION = VALUE)
 ...

The example below should help to explain the syntax.

Available Field Types and Options

text: A simple (one line) text field.
label: Descriptive label.♦
value: Default value.♦
order: Sort order placement. (Determines relative placement in forms with respect to other custom
fields.)

♦

format: One of:
plain for plain text◊
wiki to interpret the content as WikiFormatting (since 0.11.3)◊
reference to treat the content as a queryable value (since 1.0)◊
list to interpret the content as a list of queryable values, separated by whitespace (since
1.0)

◊

♦

•

checkbox: A boolean value check box.
label: Descriptive label.♦
value: Default value (0 or 1).♦
order: Sort order placement.♦

•

select: Drop-down select box. Uses a list of values.
label: Descriptive label.♦
options: List of values, separated by | (vertical pipe).♦
value: Default value (one of the values from options).♦
order: Sort order placement.♦

•

radio: Radio buttons. Essentially the same as select.
label: Descriptive label.♦
options: List of values, separated by | (vertical pipe).♦
value: Default value (one of the values from options).♦
order: Sort order placement.♦

•

textarea: Multi-line text area.
label: Descriptive label.♦
value: Default text.♦
cols: Width in columns.♦

•

Custom Ticket Fields 1

rows: Height in lines.♦
order: Sort order placement.♦
format: Either plain for plain text or wiki to interpret the content as WikiFormatting. (since
0.11.3)

♦

Sample Config

[ticket-custom]

test_one = text
test_one.label = Just a text box

test_two = text
test_two.label = Another text-box
test_two.value = Default [mailto:joe@nospam.com owner]
test_two.format = wiki

test_three = checkbox
test_three.label = Some checkbox
test_three.value = 1

test_four = select
test_four.label = My selectbox
test_four.options = one|two|third option|four
test_four.value = two

test_five = radio
test_five.label = Radio buttons are fun
test_five.options = uno|dos|tres|cuatro|cinco
test_five.value = dos

test_six = textarea
test_six.label = This is a large textarea
test_six.value = Default text
test_six.cols = 60
test_six.rows = 30

Note: To make entering an option for a select type field optional, specify a leading | in the fieldname.options
option.

Reports Involving Custom Fields

Custom ticket fields are stored in the ticket_custom table, not in the ticket table. So to display the values from
custom fields in a report, you will need a join on the 2 tables. Let's use an example with a custom ticket field called
progress.

SELECT p.value AS __color__,
 id AS ticket, summary, owner, c.value AS progress
 FROM ticket t, enum p, ticket_custom c
 WHERE status IN ('assigned') AND t.id = c.ticket AND c.name = 'progress'
AND p.name = t.priority AND p.type = 'priority'
 ORDER BY p.value

Note that this will only show tickets that have progress set in them, which is not the same as showing all tickets.
If you created this custom ticket field after you have already created some tickets, they will not have that field
defined, and thus they will never show up on this ticket query. If you go back and modify those tickets, the field

Available Field Types and Options 2

will be defined, and they will appear in the query. If that's all you want, you're set.

However, if you want to show all ticket entries (with progress defined and without), you need to use a JOIN for
every custom field that is in the query.

SELECT p.value AS __color__,
 id AS ticket, summary, component, version, milestone, severity,
 (CASE status WHEN 'assigned' THEN owner||' *' ELSE owner END) AS owner,
 time AS created,
 changetime AS _changetime, description AS _description,
 reporter AS _reporter,
 (CASE WHEN c.value = '0' THEN 'None' ELSE c.value END) AS progress
 FROM ticket t
 LEFT OUTER JOIN ticket_custom c ON (t.id = c.ticket AND c.name = 'progress')
 JOIN enum p ON p.name = t.priority AND p.type='priority'
 WHERE status IN ('new', 'assigned', 'reopened')
 ORDER BY p.value, milestone, severity, time

Note in particular the LEFT OUTER JOIN statement here.

Updating the database

As noted above, any tickets created before a custom field has been defined will not have a value for that field.
Here's a bit of SQL (tested with SQLite) that you can run directly on the Trac database to set an initial value for
custom ticket fields. Inserts the default value of 'None' into a custom field called 'request_source' for all tickets that
have no existing value:

INSERT INTO ticket_custom
 (ticket, name, value)
 SELECT
 id AS ticket,
 'request_source' AS name,
 'None' AS value
 FROM ticket
 WHERE id NOT IN (
 SELECT ticket FROM ticket_custom
);

If you added multiple custom fields at different points in time, you should be more specific in the subquery on table
ticket by adding the exact custom field name to the query:

INSERT INTO ticket_custom
 (ticket, name, value)
 SELECT
 id AS ticket,
 'request_source' AS name,
 'None' AS value
 FROM ticket
 WHERE id NOT IN (
 SELECT ticket FROM ticket_custom WHERE name = 'request_source'
);

See also: TracTickets, TracIni

Reports Involving Custom Fields 3

	tmp_vBIkGtracpdf

